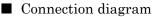
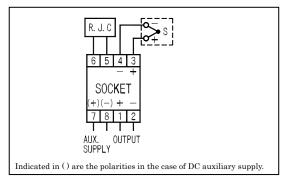
§ PLUG-IN TRANSDUCER § 1 OUTPUT TYPE

SENSOR TRANSDUCER

THERMOELECTRIC TEMPERATURE TRANSDUCER


HTP1 -


Use

By inputting thermal electromotive forces of various kinds of thermocouples based on the JIS, the device insulates and converts thermal electromotive force into an output proportional to temperature.

Features

- 1. Constant voltage/current output
- 2. Withstand voltage between input, output, auxiliary supply and outer case (earth) is AC1, 500V (50/60Hz), complete insulation for 1 minute.
- 3. Impulse withstands voltage 5kV, 1.2/50µs (between electric circuit and outer case), and positive/negative polarity 3 times each is guaranteed.
- 4. With output line surge protection (2,000A, 8/20µs, positive/negative polarity), can transmit an output directly to a distant place.

Specification

Kind of thermocouple	Standard input range	Input	Output (load resistance)	Auxiliary supply	Common specification
В	7 - 9	1 : 0-200℃ 2 : 0-300℃	$1: DC0-100mV (\geq 200 \Omega)$ $2: DC0-1V (\geq 200 \Omega)$	1 : AC100V±10%, 50/60Hz 2 : AC110V±10%, 50/60Hz	Tolerance: ±0.5% *2 Response time:
R	7 - 9	∃:0-400℃ 4:0-500℃	$ \begin{array}{ll} 3: \text{DC0-5V} & (\geq 1 \text{k} \Omega) \\ \hline 4: \text{DC 0-10V} & (\geq 2 \text{k} \Omega) \end{array} $	3 : AC200V±10%, 50/60Hz 4 : AC220V±10%, 50/60Hz	$\leq 1 \text{sec./99\%}$ Consumption VA:
S	7 - 9	5 : 0-600°C 6 : 0-800°C		5: DC24V±10% 6: DC48V±10%	AC power source:3VA DC power source:4W
К	2 - 8	77∶0-1000℃	$\underline{B}: DC0-5mA (\leq 2k\Omega)$	0: other than those above	Weight:
Е	1 - 5	8 : 0-1200℃ 9 : 0-1400℃	$\boxed{\begin{array}{c} \square : DC0-10mA (\leq 1k \Omega) \\ \square : DC0-16mA (\leq 600 \Omega) \\ \end{array}}$		AC power source:700g DC power source:350g
J	1 - 5	0 : other than those above			
Т	1 - 2		\mathbf{O} : other than those above		

•Open of current output: even if the current output terminal is used in a state of regular open, there is no problem. Also, a voltage of approx. 25V occurs on the output terminal.

•Please consult with us for N thermocouple.

HTP1-K8F5 (103(w/R.J.C)×50×121mm/350g)

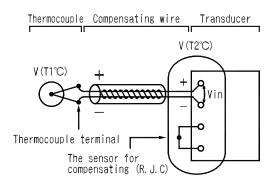
•Built-in linearizer

Thermal electromotive force of a thermocouple is not proportional to temperature. Thermal electromotive force is converted into an output proportional to temperature by a linearizer.

Built-in burnout

Detects disconnection of thermocouple and does scale-out of output to positive (+) side. Scale-out to negative side is also manufacturable if specified.

•Cold junction compensation

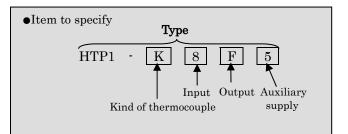

In principle, a thermocouple generates a thermal electromotive force equivalent to V (T1°C) -V (T2°C) as the Vin.

A sensor for compensation compensates for a thermal electromotive force equivalent to V (T2 $^{\circ}$ C)

In the case of cold junction compensation, the sensor for compensation is connected to terminal part $(5 \cdot 6)$, and it compensates for temperature of terminal $(5 \cdot 6)$ as temperature of input terminal $(3 \cdot 4)$.

Compensating wire

A compensating wire compensates for the temperature difference between thermocouple terminals and transducer terminals. Because color (material) of compensating wire varies according to thermocouple type, choose a compensating wire compatible with thermocouple. Match positive/negative polarities when connecting.


•External resistance range

External resistance range is the resistance value of a reciprocating circuit. The reciprocating circuit consists of thermocouple, compensating wire and connecting wire connected to a transducer. Use the product within an external resistance range less than or equal to 25Ω .

●Input wiring

Because a signal of input wiring is very weak, try to make the wirings away from noise sources such as an electrical power line, a precipitous voltage or a line with current fluctuation.

Purchase specification

